Manipulability and tie-breaking in constrained school choice

Benoit Decerf
CORE, Université Catholique de Louvain
benoit.decerf(at)uclouvain.be

Martin Van der Linden
Department of Economics, Vanderbilt University
martin.van.der.linden(at)vanderbilt.edu

August 5, 2016

Abstract

In constrained school choice mechanisms, students can only rank a subset of the schools they could potentially access. We characterize dominant and undominated strategies in the constrained Boston (BOS) and deferred acceptance (DA) mechanisms. Using our characterization of dominant strategies we show that in constrained DA, the single tie-breaking rule outperforms the multiple tie-breaking rule in terms of both manipulability and stability. We also show that DA is less manipulable than constrained BOS in the sense of Arribillaga and Massó (2015). Using our characterizations of undominated strategies, we derive advice for the students and show that more strategies can be excluded on the basis of dominance in constrained DA than in constrained BOS.

JEL Classification: C78, D47, D82, I 20.
Keywords: School choice, Dominant strategy, Undominated strategy, Manipulability, Stability, Tie-breaking Boston mechanism, Deferred acceptance mechanism.

1 Introduction

In the problem of assigning students to schools, the deferred-acceptance mechanism (DA) is non-manipulable and stable whereas the Boston mechanism (BOS) satisfies none of the two properties (Abdulkadiroğlu and Sönmez, 2003). These classical results are often used to argue in favor of DA and against BOS.

One limitation of these results is they require that students be able to report a ranking of all the schools they could potentially access. In practice however, most school districts use constrained mechanisms (Haerengen and Klijn, 2009) in which students are only allowed to rank a limited number of schools.\footnote{Stability requires that all students prefer their assignment to any school at which they have a higher priority than a student assigned to the school.}

\footnote{For example, at the time Haerengen and Klijn (2009) was written, the authors reported that the New York City school district allowed students to rank only 12 programs, while the district had more than 500 different programs available.}

1 Stability requires that all students prefer their assignment to any school at which they have a higher priority than a student assigned to the school.

2 For example, at the time Haerengen and Klijn (2009) was written, the authors reported that the New York City school district allowed students to rank only 12 programs, while the district had more than 500 different programs available.
denote the constrained version of the two above mechanisms by DA^{k} and BOS^{k}, where k is the number of schools students can report.

Unfortunately, when it is constrained, DA looses both of its appealing properties. First, DA^{k} is manipulable because students have to worry about running out of reported schools if they rank schools at which they have a low priority. Second, DA^{k} is unstable when students cannot rank all the schools because they may fail to claim a seat at some schools that they like better than their assignment. Hence, the comparison of DA^{k} and BOS^{k} is much less clear than that of DA and BOS.

In this paper, we characterize the undominated and dominant strategies of the games induced by DA^{k} and BOS^{k}. We use these characterizations to show that the comparison between DA and BOS extends to DA^{k} and BOS^{k} in the sense that DA^{k} has better stability and manipulability properties than BOS^{k}.

First, we demonstrate that the proportion of students who have a dominant strategy in DA^{k} increases with k. This result is not the mere consequence of more students being able to rank all their acceptable schools as k increases. Instead, it relates to possible correlations between priorities at schools and to the concept of a safe set of school that we introduce. We also show that students who have a dominant strategy in DA^{k} do not cause instabilities. These two results suggest that stability and non-manipulability improve in DA^{k} as k increases.

The same is not true for BOS^{k} where dominant strategies are not affected by k or by correlation in the priorities. In fact, given any profile of priorities, every preference relation that provides a student with a truthful dominant strategy in BOS^{k} also provides the student with a truthful dominant strategy in DA^{k} (but the converse is not true). Thus DA^{k} is less manipulable than BOS^{k} in the sense of Arribillaga and Massó (2015). Using the same criterion, we show that contrary to BOS^{k} which is equally manipulable for all k, DA^{k} becomes less manipulable as k increases.

Using our characterization of undominated strategies, we derive recommendations on the way student should report their preferences in DA^{k} and BOS^{k}. Because these recommendations are based on dominance only, they are uncontroversial in the sense that they do not depend on the preferences reported by the other students.

Roughly, we show that in DA^{k} students should report as many acceptable schools as possible without switches (i.e., in the same order as their true preferences). But students should also pay careful attention to the priority structure. Indeed, not all strategies that report as many acceptable schools as possible without switch are undominated. Students must take advantage of safe sets of schools and select the right combination of schools to report for their strategy to be undominated.

In BOS^{k}, it is much harder to give uncontroversial recommendations to students. In fact, we show that the set of strategies that can be ruled out on the basis of dominance in BOS^{k} is a subset of the set of strategies that can be ruled out on the same basis in DA^{k}. In this sense too, BOS^{k} is strategically more involved than DA^{k}.

Another limitation of the standard theory of school choice is the assumption that schools rank students according to a strict priority order. In practice, the

3 I.e., students who play a dominant strategy prefer their assignment (i) to being unassigned, (ii) to any school at which they have a higher priority than a student assigned to the school, and (iii) to any school that still has available seats.
criteria used to establish priorities are often too sparse to establish such a strict ranking. To apply standard assignment mechanisms, school district therefore rely on random tie-breaking rules.

The two most common tie-breaking rules are the single tie-breaking rule (STB) and the multiple tie-breaking rule (MTB). STB breaks ties in the same way in every school whereas MTB draws a different tie-breaking order at each school.

Counter-factual simulations based on field data as well as theoretical results in large random environments suggest that DA is more efficient when used with STB than with MTB. In contrast with the existing literature, we introduce the first results on the stability and manipulability effects of tie-breaking rules. Intuitively, STB induces more correlation than MTB among priorities at different schools (on average). Thus, by the results described above, STB makes it more likely for students (i) to have a dominant strategy and (ii) not to cause instabilities. We confirm this intuition in a simulation using random profiles. Our simulation shows a clear increase in the proportion of students who have a dominant strategy as \(k \) increase when STB is used. The same proportion is almost flat when MTB is used.

2 The school choice model

The model is similar to Haeringer and Klijn (2009). There is a finite set of schools \(S := \{s_1, \ldots, s_m\} \) with \(m \geq 2 \), and a finite set of students \(T := \{t_1, \ldots, t_n\} \).

A generic school is denoted \(s_j \) or sometimes \(s \). Every school \(s_j \in S \) has a capacity \(q_j \) and a priority profile \(F_j \). A capacity \(q_j \in \mathbb{N}_+ \) represents the number of seats available at school \(s_j \). Priorities \(F_j \) are linear orderings on the students in \(T \). We assume that the seats are in short-supply, that is \(\sum_{s_j \in S} q_j < n \).

A generic student is denoted \(t_i \), or sometimes \(t \). Every student \(t_i \) has preferences \(R_i \). Preferences are a linear ordering on \(S \cup \{t_i\} \). A preference profile \(R := (R_1, \ldots, R_n) \) is a list of the preferences of every \(t_i \in T \). For a given preference profile \(R \), the list containing the preferences of everyone but \(t_i \) is \(R_{-i} \).

Profiles of preferences, priorities, and quotas are fixed but arbitrary throughout most of the paper. Exceptions are the simulation in Section 5.2 and the

4 In Boston for example, Abdulkadiroğlu et al. (2006) report that the high-school district can have more than 6000 applicants for only 5 priority groups. Thus, numerous ties ensue and tie-breaking plays an essential role in students’ eventual assignment.

5 See Abdulkadiroğlu et al. (2009) and De Haan et al. (2015) for simulations based on field data, and Ashlagi et al. (2015), Ashlagi and Nikzad (2015) and Arnosti (2015) for theoretical results in the large.

6 The model in this paper differs slightly from the model of the companion paper Decerf and Van der Linden (2016). Among other differences, here we take advantage of the fact that priorities, quotas and preferences can be fixed throughout most of the analysis to simplify the model.

7 This is a minor restriction which is common in the literature (see Decerf and Van der Linden (2016) for a detailed justification). We adopt the assumption throughout for simplicity. Most of our results on DA hold without the short-supply assumption. It is very useful in BOS however because it significantly restricts the set of undominated strategies (see Section 6). Even then, it is often enough to assume that no set of \(k \) schools has more seats than the number of students.
the cardinality of A if M is Q Q S are ranked in (iv)

μ preferences Q choice (Ergin and Sönmez, 2006). Therefore, we sometimes refer to reported

t (Non wastefulness) no student prefers a school with an available seat to her

and (Individual rationality) no student μ contains no blocking pairs,

(Non wastefulness) no student prefers a school with an available seat to her

assignment, that is there exists no $t_i \in T$ and $s_j \in S$ such that $s_j P_i \mu(t_i)$ and there are less than q_j students assigned to s_j in μ.

A student t_i causes an instability in assignment μ if she is involved in a

violation of one of the three above properties, i.e., t_i is either (i) involved in a

blocking pair, (ii) assigned to an unacceptable school, or (iii) prefers a school

with an available seat to her assignment.

School choice mechanisms and games of school choice

A (school choice) mechanism M associates every profile of reported preferences $Q := (Q_1, \ldots, Q_n)$ in some domain with a feasible assignment μ. In a

constrained mechanism M^k, the domain only contains reported preference profiles in which students report no more than $k \leq m$ acceptable schools. The

notation and terminology for preferences extend to reported preferences : (i) $s Q_i s'$ means that t_i reports s weakly before s' in Q_i (where possibly $s = s'$), (ii) school $s \in S$ is ranked by t_i in Q_i if $s Q_i t_i$ (iii) $s \in Q_i$ if s is ranked in Q_i, (iv) $\#Q_i$ is the number of ranked schools in Q_i, (v) $S \subseteq Q_i$ if all the schools in S are ranked in Q_i, (vi) for all x, $Q_i(x)$ is the school ranked in x-th position in Q_i, (vii) a typical profile of reported preferences is $Q := (Q_1, \ldots, Q_n)$ and (viii) Q_{-i} is the list of reported preferences of every student but t_i.

For any Q and any t_i, the school t_i is assigned to under assignment $M(Q)$ is $M_i(Q)$. Student t_i is assigned in M given Q if $M_i(Q) \neq t_i$ and unassigned

if $M_i(Q) = t_i$.

A pair (M, R) defines a strategic form game known as a game of school choice (Ergin and Sönmez, 2006). Therefore, we sometimes refer to reported preferences Q_i as strategies. Given mechanism M, Q_i is a dominant strategy if

$M_i(Q_i, Q_{-i}) R_i M_i(Q_i', Q_{-i})$, for all Q_{-i} and all Q_i'.
Strategy Q_i is an undominated strategy if for all Q'_i,

$$M_i(Q_i, Q_{-i}) = M_i(Q'_i, Q_{-i}), \quad \text{for all } Q_{-i}, \text{ or}$$

$$M_i(Q_i, Q_{-i}) \not\leq M_i(Q'_i, Q_{-i}), \quad \text{for some } Q_{-i}.$$

Strategy Q_i is dominated if it is not undominated, that is there exists a strategy Q'_i such that $M_i(Q'_i, Q_{-i}) \not\leq M_i(Q_i, Q_{-i})$ for all Q_{-i} and $M_i(Q'_i, Q_{-i}) \not\geq M_i(Q_i, Q_{-i})$ for some Q_{-i}.

3 Two classes of competing mechanisms

In this section we describe the two classes of school choice mechanisms that we focus on. These classes were identified by Haeringer and Klijn (2009) and correspond to constrained versions of BOS and DA. We first describe the well known unconstrained BOS.

Round 1: Students apply to the school they reported as their most preferred acceptable school (if any). Every school that receives more applications than its capacity starts rejecting the lowest applicants in its priority ranking, up to the point where it meets its capacity. All other applicants are definitively accepted at the schools they applied to and capacities are adjusted accordingly.

\vdots

Round ℓ: Students who are not yet assigned apply to the school they reported as their ℓth acceptable school (if any). Every school that receives more new applications in round ℓ than its remaining capacity starts rejecting the lowest new applicants in its priority ranking, up to the point where it meets its capacity. All other applicants are definitively accepted at the schools they applied to and capacities are adjusted accordingly.

The algorithm terminates when all acceptable schools of the reported profile have been considered, or when every student is assigned to a school. The constrained versions of BOS which we will denote by BOS^k are identical to BOS except that no student is allowed more than k acceptable schools in her reported preferences.

We now turn to DA. Again, we first describe the famous unconstrained DA.

Round 1: Students apply to the school they reported as their most preferred acceptable school (if any). Every school that receives more applications than its capacity definitively rejects the lowest applicants in its priority ranking, up to the point where it meets its capacity. All other applicants are temporarily accepted at the schools they applied to (this means they could still be rejected in a later round).

\vdots

Round ℓ: Students who were rejected in round $\ell-1$ apply to their next acceptable school (if any). Every school considers the new applicants of
round ℓ together with the students it temporarily accepted. If needed, each school definitely rejects the lowest students in its priority ranking, up to the point where it meets its capacity. All other applicants are temporarily accepted at the schools they applied to (this means they could still be rejected in a later round).

The algorithm terminates when all acceptable schools of the reported profile have been considered, or when every student is assigned to a school. The constrained versions of DA which we will denote DAk are identical to DA except that no student is allowed more than k acceptable schools in her reported preferences.

4 Safe sets, safe strategies and other concepts

In this section, we introduce some concepts that will prove useful in the characterization of undominated and dominant strategies in DAk and BOSk. Of particular importance are the concepts of safe sets and safe strategies which we illustrate in more details.

In many games, the set of undominated strategies is quite large. In some games, it is even equal to the whole strategy space. In school choice mechanisms however, requiring that a strategy be undominated is far from vacuous. In DAk mechanisms in particular, eliminating dominated strategies constrains the set of strategies significantly. Lemma 1 in Section 5.1 shows that most undominated strategies

(i) do not rank unacceptable schools,

(ii) feature no switches, where a switch is a situation in which schools s and s' are ranked in Q_i and $s Q_i s'$ although $s' P_i s$, and

(iii) rank as many acceptable schools as possible, i.e., $\#Q_i = \min\{k, \#R_i\}$.

When a strategy satisfies (i), (ii) and (iii) we say that this strategy is clean.

As we show in Example 1 below, although most undominated strategies are clean, not all clean strategies are undominated. The example relies on the concept of a safe set (of schools). A set of schools $S^* \subseteq S$ is safe for t_i if whenever t_i ranks all the schools in S^*, t_i is at least assigned to the worst school in S^* according to t_i’s reported preferences. Formally, take any set of schools $S^* \subseteq S$. Let Q_i^* be any strategy that ranks all the schools in S^* and let $s^* \in S^*$ be the last school in S^* that is ranked in Q_i^* (formally $s Q_i^* s^*$ for all $s \in S^*$). Then $S^* \subseteq S$ is a safe set for t_i in M if $M_i(Q_i^*, Q_{-i}) Q_i^* s^*$ for every Q_{-i}.

Example 1 (Safe set of schools). For simplicity, the example is presented for DA3 in an environment with 4 schools but it can easily be extended to more schools. The left panel represents the students’ preferences and the right panel represents the schools’ priorities. Each school has one seat and the notation () indicates that the rest of the ordering is arbitrary.
At first glance, it may seem that for t_4, ranking $Q_4 : s_1 s_2 s_4$ is undominated. By ranking s_4 where t_4 has the highest priority, t_4 makes sure that if t_1 and t_2 obtain the unique seats at s_1 and s_2, t_4 would not end up unassigned. But note that if t_1 and t_2 are assigned to s_1 and s_2, t_2 cannot at the same time be assigned to s_3. If t_2 is assigned to either s_1 or s_2, then student t_4 has the highest priority at t_3 among the remaining students. Thus, for t_4, reporting $Q_4 : s_1 s_2 s_3$ dominates reporting $Q_4 : s_1 s_2 s_4$.

In the above terminology, $\{s_1, s_2, s_3\}$ is a safe set for t_4 because when ranking $s_1, s_2,$ and s_3, student t_4 is certain to be assigned to a school she reports (weakly) above the school she reports last in $\{s_1, s_2, s_3\}$ (whatever other students report).

A safe strategy is a strategy that contains a safe set. Among other things, a student who plays a safe strategy is guaranteed to be assigned.

We say that school s_j is safe-if-favorite for t_i if t_i is among the q_j-students with highest priority at school s_j. The terminology refers to BOS^k. If school s_j is safe-if-favorite for t_i and $Q_i(1) = s_j$, then $BOS^k_i(Q_i, Q_{-i}) = s_j$ for all Q_{-i} (but not necessarily if $Q_i(x) = s_j$ for some $x \neq 1$).

Example 1 (Continued). School s_3 is safe-if-favorite for t_2 because t_2 has the highest priority at s_3. For any $Q_2 : s_3$ (), we have $BOS^k_2(Q_2, Q_{-2}) = s_3$ for all Q_{-2}. For the same reason, both schools s_1 and s_2 are safe-if-favorite for t_1.

Finally, for any mechanism M and strategy Q_i, the range of Q_i is the set of all the schools t_i could be assigned to when she reports Q_i; that is,

$$Range(Q_i) = \{s \in S \mid M_i(Q_i, Q_{-i}) = s \text{ for some } Q_{-i}\}.$$.

Example 1 (Continued). Consider $Q_2 : s_1 s_3 s_2$. Note that s_3 is safe-if-favorite for t_2. Thus, t_2 is never assigned to s_2 or t_2 when reporting Q_2 in DA^3. Also, there exists Q_{-2} for which $DA^3_2(Q_2, Q_{-2}) = s_1$, for example when t_1 does not rank s_1. Therefore, $Range(Q_2) = \{s_1, s_3\}$ in DA^3.

5 Dominant and undominated strategies in DA^k

5.1 Preliminary results

In this subsection, we present some preliminary results that shed light on the structure of dominant and undominated strategies in DA^k. These results are used to prove the characterizations of dominant and undominated strategies in Sections 5.2 and 5.3.

We know from Example 1 that undominated strategies are not as simple as they may seem in DA^k. Strictly speaking, it is not even the case that all undominated strategies are clean (see Section 7). For example, when a student has the highest priority at her most preferred school, any strategy in which she ranks her favorite school first is undominated. This includes many unclean
undominated strategies. In these unclean undominated strategies however, the student is always assigned to her first choice and any violation of (i), (ii) or (iii) (in the definition of a clean strategy) never has any impact on the student’s assignment.

Lemma 3 at the end of this section shows that this is true for any unclean undominated strategy. If an undominated strategy violates (i), (ii), or (iii), it must contain a safe set past which the student can inconsequentially rank unacceptable schools, rank schools with switch, or not rank any additional schools.

Lemma 3 relies on the two next lemmas which will also be useful in the characterizations and are interesting in their own right. Two strategies \(Q_i \) and \(Q'_i \) are equivalent if the outcome for \(t_i \) is the same under \(Q_i \) and \(Q'_i \) for all \(Q_{-i} \). Lemma 1 shows that for every unclean undominated strategy there exists an equivalent clean strategy. Lemma 1 is useful when studying the properties of undominated strategies outcomes in DA\(^k\) because it allows us to focus on clean profiles only (i.e., profiles made of clean strategies).

Lemma 1. For all \(k \in \mathbb{N} \) and any undominated strategy \(Q_i \) of DA\(^k\), there exists an equivalent strategy \(Q'_i \) of DA\(^k\) that is clean.

Lemma 1 follows from the strategy-proofness of DA (Dubins and Freedman, 1981). Let \(Q'_i \) be any clean strategy of DA\(^k\) which reports first all acceptable schools ranked in \(Q_i \). By strategy-proofness, if \(Q'_i \) were \(t_i \)'s true preferences, \(t_i \) would always (weakly) prefer ranking \(Q'_i \) to ranking \(Q_i \). But by construction of \(Q'_i \), this implies that \(t_i \) also likes the outcome of \(Q'_i \) weakly better than the outcome of \(Q_i \) with respect to \(t_i \)'s true preferences \(R_i \). Because \(Q_i \) is undominated, the only way this can be true is if \(Q_i \) and \(Q'_i \) always yield the same outcome.

Intuitively, Lemma 2 shows that, in DA\(^k\), a student will regret “wasting” ranked schools unless she is absolutely sure that this “waste” will never have any impact on her assignment. For instance, consider the unsafe strategy \(Q_i : R_i(1) R_i(3) \preceq t_i \) in DA\(^4\) for some unacceptable school \(s \). Lemma 2 implies that \(t_i \) will regret not having ranked \(R_i(2) \) for some subprofile \(Q^*_{x_i} \). By this we mean that when others report \(Q^*_{x_i} \) and \(t_i \) reports \(Q_i \), \(t_i \) will end up assigned to \(R_i(3) \) and could have been assigned to \(R_i(2) \) if she had reported \(Q'_i : R_i(1) R_i(2) R_i(3) s \) instead. Lemma 2 also implies that when \(t_i \) reports the unsafe \(Q'_i \), she will regret not having ranked an acceptable school instead of \(s \) for some subprofiles \(Q^*_{x_i} \) (assuming \(t_i \) has at least four acceptable schools).

The lemma is based on the concept of an accessible school. A school \(s^* \) is accessible for \(t_i \) given \(Q_{-i} \) if \(t_i \) is certain to be assigned to a school she ranks at least as high as \(s^* \) when ranking \(s^* \). Formally, school \(s^* \) is accessible for \(t_i \) in mechanism \(M \) given \(Q_{-i} \) if for all \(Q_i \) that ranks \(s^* \), we have \(M_i(Q_i, Q_{-i}) Q_i s^* \). Lemma 2 shows that if \(t_i \) is assigned to \(s \) under some profile \(Q \), then any school \(s^* \) that \(Q_i \) ranks lower than \(s \) or that is not ranked under \(Q_i \) is accessible under some other subprofile \(Q^*_{x_i} \) for which \(t_i \) is still assigned to \(s \) when reporting \(Q_i \).

Lemma 2 (Regret if waste ranked school).

For any \(k \in \mathbb{N} \), \(Q_i, t_i \in T \), and \(s \in S \cup \{t_i\} \), suppose that DA\(^k\)(\(Q_i, Q_{-i} \)) = \(s \)

8 Indeed, by Lemma 1, if all outcomes of clean undominated strategies in DA\(^k\) satisfy property \(X \), then all undominated strategy outcomes in DA\(^k\) satisfy property \(X \).

9 By which we mean that \(t_i \)'s preferences would take the form \(R_i : Q'_i \).
Proposition 1

(Proposition in the set of dominant strategies in DA)

Equipped with the lemmas from the last subsection, we can now characterize 5.2 Characterizing dominant strategies

(b) and (c) can never have any impact on t_1 can be true is if there exists a safe set and if that safe set satisfies (i) and (ii).

(c) adding unranked acceptable schools. Because Q_i from Q_i equivalent we can construct an

the strategy must fail to rank some acceptable school \hat{s} unacceptable schools. For such a dominant strategy to violate both (i) and (ii),

the necessity of (i) and (ii) for dominant strategies with no switches and no

DA of s.

Lemma 3. For all $k \in \mathbb{N}$, if Q_i is an unclean undominated strategy in DA^k, then there exists a safe set S^S ranked in Q_i such that

(i) any schools that are switched in Q_i are ranked after S^S, and

(ii) any unacceptable school is ranked after S^S.

When Q_i is an unclean undominated strategy, we know from Lemma 1 that we can construct an equivalent clean strategy Q'_i. Strategy Q'_i is constructed from Q_i by (a) switch alternatives in Q_i, (b) deleting unacceptable schools, and (c) adding unranked acceptable schools. Because Q_i and Q'_i are equivalent, (a), (b) and (c) can never have any impact on t_i's assignment. The only way this can be true is if there exists a safe set and if that safe set satisfies (i) and (ii).

5.2 Characterizing dominant strategies

Equipped with the lemmas from the last subsection, we can now characterize the set of dominant strategies in DA^k.

Proposition 1 (Dominant strategies in DA^k).

For all $k \in \mathbb{N}$, strategy Q_i is dominant in DA^k if and only if either

(i) all the acceptable schools in R_i are ranked without switches in Q_i and these are the only schools ranked in Q_i, i.e., $Q_i : R_i(1) \ldots R_i(\#R_i)$ t_i, or

(ii) for some $q \leq \min\{k, \#R_i\}$, the q most preferred schools in R_i form a safe set that is ranked first in Q_i and there is no switch among those q schools in Q_i, i.e., $Q_i : R_i(1) \ldots R_i(q)$ ().

The sufficiency of (i) and (ii) follows directly from the strategy-proofness of DA (Dubins and Freedman, 1981). By Lemma 3, it is sufficient to prove the necessity of (i) and (ii) for dominant strategies with no switches and no unacceptable schools. For such a dominant strategy to violate both (i) and (ii), the strategy must fail to rank some acceptable school \hat{s}. This means that t_i will

10 Lemma 2 is used to guarantee this last point. If there is no safe set satisfying (i) and (ii), Lemma 2 can be used to show that for some Q^*_s, a school ranked before school $DA^k(Q_i, Q^*_s)$ in strategy Q'_i is accessible and that $DA^k(Q'_i, Q^*_s)$ must therefore differ from $DA^k(Q_i, Q^*_s)$, contradicting the fact that Q_i and Q'_i are equivalent.
sometimes be unassigned, or assigned to a school \(s^* \) that \(t_i \) likes less than \(\hat{s} \). But in both these cases, Lemma 2 tells us that for some sub-profile \(Q_{i-}^* \), \(t_i \) could have been assigned to \(\hat{s} \) if \(t_i \) had reported different preferences, which makes it impossible for \(Q_i \) to be a dominant strategy.

5.2.1 More dominant strategies as \(k \) increases and under the single tie-breaking rule: evidence from simulations

Proposition 1 notably implies that the proportion of agents who have a dominant strategy increases with \(k \) (for a given profile of preferences, priorities, and capacities). First, as \(k \) increases, more and more students can rank all their acceptable schools (condition (i)).

Martin: We already use \(q \) for capacities, we should use a different letter here

But more importantly, the number of students who have a safe set covering their \(q \leq k \) preferred schools weakly increases with \(k \) (condition (ii)). Indeed, a set of schools \(S \) is safe for \(t_i \) if the set of students who have a higher priority than \(t_i \) at any of the schools in \(S \) contains less students that the total number of seats at schools in \(S \).

Oftentimes, this number is in fact strictly increasing, in particular if priorities are correlated across schools. Such correlations can occur when priorities are determined by test scores. Correlations can also result from the tie-breaking rule in use. In many school districts, the criteria used to determine students’ priorities are not sufficient to generate a strict priority ranking of the students. To apply \(DA^k \), ties in priorities are therefore broken, usually at random.

The two most common tie-breaking rules are the single tie-breaking rule (STB) and the multiple tie-breaking rule (MTB). STB breaks ties in the same way at every school whereas MTB uses a different random order to break ties at each school.

The literature suggests that STB performs better than MTB in terms of efficiency (see the references in Footnote 5). Condition (ii) in Proposition 1 indicates that STB also induces better incentives than MTB as measured by the proportion of students with a dominant strategy. We illustrate this last point through simulations in Figure 1. In the figure, the proportion of students with a dominant strategy is always higher under STB than under MTB.\(^{11}\)

The next corollary of Proposition 1 shows that correlations in priorities also have implications for stability.

Corollary 1. For all \(k \in \mathbb{N} \) and any \(Q_{i-} \), if \(Q_i \) is a dominant strategy in \(DA^k \), then \(t_i \) does not cause instabilities in \(DA^k(Q_i, Q_{i-}) \).

Corollary 1 follows from observing that in both (i) and (ii) in Proposition 1, \(t_i \) applies and is rejected from every school she likes better than her assignment.

When combined with Proposition 1, Corollary 1 implies that the lines in Figure 1 provide an upper bound on the number of students who could cause instabilities. The upper bound corresponds to one minus the proportions in the figures and relies on the assumption that students play dominant strategies.

\(^{11}\) The linearity of the curves is a consequence of averaging across different random profiles. Monotonicity in \(k \) on the other hand is a feature of every individual profile as Proposition 1 shows.
when such strategies are available. The simulation therefore suggests that STB could also induce more *stable* assignments than MTB.
Figure 1: Proportion of students with a dominant strategy in DA_k as a function of the number of schools that students can rank. The value for each k is the average over 100 random profiles of preferences, priorities, and capacities, with 1000 students and 10 schools. In every profile, all 10 schools are acceptable to every student. The four lines correspond to different values of the sum of seats at the 10 schools (the 1000 case is in slight violation of the short-supply assumption). Priorities are constructed by forming 4 random priority groups at each school. Ties inside the groups are then broken according to the multiple tie-breaking rule (subfigure (a)) or the single tie-breaking rule (subfigure (b)).
5.3 Characterizing undominated strategies

We now turn to the characterization of undominated strategies. Clearly, if \(t_i \) has dominant strategies, then these dominant strategies are \(t_i \)'s only undominated strategies. It remains to determine the form of undominated strategies when \(t_i \) does not have a dominant strategy. The next lemma shows that in this case, \(t_i \) must rank \(k \) (acceptable) schools for a strategy to be undominated.

Lemma 4. For all \(k \in \mathbb{N} \), if \(Q_i \) is not a dominant strategy in \(DA_k \) and \(\#Q_i < k \), then \(Q_i \) is dominated in \(DA_k \).

The intuition is similar to the previous lemmas. If neither case (i) nor case (ii) in Proposition 1 apply and if \(\#Q_i < k \), then \(t_i \) does not rank one of her acceptable school \(s \). Also, there is a risk for \(t_i \) to be unassigned or to be assigned to a school that she likes less than \(s \). Then, by Lemma 2, the strategy that ranks the acceptable schools in \(Q_i \) as-well as \(s \) without switches dominates \(Q_i \).

By Lemma 4, ranking \(k \) acceptable schools is necessary for \(Q_i \) to be undominated (if \(Q_i \) is not dominant). But as we illustrated in Example 1, it is not sufficient. In the example, strategy \(Q_4 : s_1 s_2 s_4 \) consists of three acceptable schools. It is however dominated in \(DA_3 \) for \(t_4 \) because \(\{s_1, s_2, s_3\} \) is a safe set for \(t_4 \).\(^{12}\)

The problem with \(Q_4 \) is that \(t_4 \) has a safe set that is in some sense “everywhere above” \(Q_4 \). To make this more precise, let us introduce the concept of a **minimal safe set**. For a set of schools \(S^* \subseteq S \), let \(w^{S^*} \) be the worst school in \(S^* \) according to \(R_i \). A minimal safe set \(S^{MS} \) is a safe set for which \(S^{MS} \setminus \{w^{S^{MS}}\} \) is not a safe set. We then have the following characterization.

Proposition 2 (Undominated strategies in \(DA_k \)).

For all \(k \in \mathbb{N} \), \(Q_i \) is an undominated strategy in \(DA_k \) if and only if either

(i) \(Q_i \) is a dominant strategy in \(DA_k \), or

(ii) \(k \) acceptable schools are ranked without switches in \(Q_i \) and for any minimal safe set \(S^{MS} \) with \(\#S^{MS} \leq k \) and \(S^{MS} \not\in Q_i \),

\[s P_i w^{S^{MS}} \quad \text{for some } s \in Q_i \text{ with } s \notin S^{MS}. \]

5.3.1 Uncontroversial recommendations in \(DA_k \)

Proposition 2 summarizes all the recommendations that derive from the lemmas of Section 5.1 and from Proposition 1. First, if a student is able to rank all her acceptable schools, doing so is optimal (point (i) and Proposition 1).

Second, as in \(DA \), unclean strategies are never optimal. By Proposition 2, the only case in which an undominated strategy is unclean corresponds to (ii) in Proposition 1. Even then, playing an unclean strategy is a risk not worth taking. Whatever strategy a student decides to play, (a) she never loses from playing an equivalent clean strategy instead, and (b) she might gain from it if she wrongly believed that case (ii) in Proposition 1 applies. In this sense, no unclean undominated strategy is robust to a misappreciation of the priority structure.

\(^{12}\) It is easy to extend the example in such a way that \(t_4 \) does not have a dominant strategy in \(DA^3 \), for example by adding a school \(s^* \) that \(t_4 \) ranks first but at which she has the lowest priority.
Third, students should pay close attention to the priority structure in deciding which strategy to adopt. In particular, students might be too conservative if they do not take into account the interaction between their priorities at different schools. Ranking “safety” schools at which a student has a high priority may seem wise if the student is worried she might end up unassigned. As case (ii) in Proposition 2 shows however, safety strategies may be dominated by strategies that rank an appropriate combination of more risky schools at which the student has slightly lower priorities (see Example 1).

6 Dominant and undominated strategies in BOS^k

6.1 Preliminary results

Again, we start with some preliminary results about the form of dominant and undominated strategies in BOS^k. Contrary to DA^k, undominated strategies in BOS^k feature non-trivial switches, i.e., switches that do affect students’ assignments. This is a consequence of BOS being manipulable (as opposed to DA).

Despite allowing for non-trivial switches, undominated strategy in BOS^k share some common properties with the undominated strategies of DA^k.

Lemma 5. For all $k \in \mathbb{N}$, if strategy Q_i is undominated in BOS^k, then $Range(Q_i)$ contains only acceptable schools.13

Although all schools in the range of an undominated strategy Q_i are acceptable, not all schools in Q_i belong to the range of Q_i in BOS^k. As in DA^k, some strategies of BOS^k are safe and contain ranked schools that never affect the final assignment. These safe strategies are much more rare in BOS^k than in DA^k however, as the next lemma shows.

Let an over-supplied set of schools $O \subseteq S$ be a set of school for which $\sum_{s_j \in O} q_j \geq n$.

Lemma 6 (Safe strategies in BOS^k).
For all $k \in \mathbb{N}$, a strategy Q_i is safe in BOS^k if and only if

(i) $Q_i(1)$ is safe-if-favorite, or

(ii) there exists an over-supplied set of schools $O \subseteq Q_i$ with $\#O \leq k$.

Note that (ii) is ruled out by the short-supply assumption. Under the short-supply assumption, BOS^k rarely features safe strategies because when $Q_i(1)$ is not safe-if-favorite, a student can be rejected in the first round while all the schools are filled in the first round. When this occurs, t_i ends up unassigned because BOS^k does not allow t_i to claim the seats of students who were assigned in the first round in later rounds of BOS^k.

Combined with Lemma 6, Lemma 7 shows that only safe strategies can dominate a strategy that contains $\min\{k, \#R_i\}$ acceptable schools.

13 The lemma is intuitive but the construction of a strategy Q'_i dominating Q_i when $Range(Q_i)$ contains unacceptable schools is not trivial (see Appendix C). In particular, it is not enough to simply replace the unacceptable school in Q_i by the preferred acceptable school not ranked in Q_i.

Lemma 7. For all $k \in \mathbb{N}$, if Q'_i ranks $\min\{k, \#R_i\}$ schools all of which are acceptable and if Q_i dominates Q'_i, then Q_i is safe.

Intuitively, when Q_i is unsafe and different from Q'_i, it is always possible to construct a sub-profile Q'^*_i for which t_i is assigned when playing Q'_i but is unassigned when playing Q_i. Then the lemma follows from the fact that Q'_i only ranks acceptable schools.

6.2 Characterizing dominant strategies

As the preliminary results suggest, BOS^k rarely features dominant strategies.

Proposition 3 (Dominant strategies in BOS^k).
For all $k \in \mathbb{N}$, a strategy Q_i is a dominant strategy in BOS^k if and only if $Q_i(1) = R_i(1)$ and either

(i) $R_i(1)$ is safe-if-favorite, or
(ii) $\#R_i = \#Q_i = 1$.

Intuitively, if $R_i(1)$ is not safe-if-favorite, it is always possible to find another undominated strategy $Q'_i \neq Q_i$ containing $\min\{k, \#R_i\}$ acceptable schools. Then by Lemma 7, Q_i does not dominate Q'_i.

From Proposition 3 it is easy to see that, as in DA^k, students who have dominant strategies in BOS^k do not cause instabilities.

Corollary 2. For all $k \in \mathbb{N}$ and any Q_{-i}, if Q_i is a dominant strategy in BOS^k then t_i does not cause instabilities in $BOS^k(Q_i, Q_{-i})$.

Observe however that the number of students who have a dominant strategy is typically small and does not increase with k in BOS^k (under the short-supply assumption). Thus, the trends illustrated in Figure 1 do not occur in BOS^k. In particular, the choice of the tie-breaking rule does not impact the number of students who have a dominant strategy in BOS^k. As a consequence, the channel through which stability increases when k increases in DA^k does not play out in BOS^k either (despite Corollary 2).

6.3 Characterizing undominated strategies

Revealing preferences truthfully is a dominant strategy in DA. Advising students to do so is therefore uncontroversial. In this sense, DA has better strategic properties than BOS because truthful report is not a dominant strategy in BOS. A similar result holds for DA^k and BOS^k. As we show in Corollary 3 (Section 7), it is easier to uncontroversially rule out some strategies in DA^k than in BOS^k.

The next proposition is instrumental in proving Corollary 3. It shows that the set of undominated strategies of BOS^k is quite large.

14 Even with sets of over-supplied schools, the proportion of players with a dominant strategy increases slower under BOS^k than under DA^k. This is because in BOS^k safe sets appear as k increases due only to over-supplied set of schools. In addition to these safe sets, DA^k features other safe sets that result from the ability to claim priorities in every round of the assignment procedure.
Proposition 4 (Undominated strategies in BOS^k).
For all $k \in \mathbb{N}$, Q_i is an undominated strategy in BOS^k if and only if either

(i) $Q_i(1)$ is t_i’s preferred safe-if-favorite and acceptable school, or

(ii) $Q_i(1)$ is not safe-if-favorite and Q_i contains $\min\{k, \#R_i\}$ acceptable schools, one of which t_i prefers to all of her safe-if-favorite and acceptable schools.

Observe that if $R_i(1)$ is safe-if-favorite, (ii) cannot occur and the undominated strategies are those dominant strategies Q_i for which $Q_i(1) = R_i(1)$. Observe also that (ii) does not restrict the ordering of schools in Q_i to match R_i and allows for many non-trivial switches.

To see why (ii) is sufficient recall that, by Lemma 7, when Q_i ranks $\min\{k, \#R_i\}$ acceptable schools, Q_i is not dominated by any unsafe strategy. A safe strategy Q'_i can still dominate Q_i. By Lemma 6, such safe strategy Q'_i must always result in the assignment of t_i to her safe-if-favorite school $Q'_i(1)$. But by (ii), Q_i contains some school s^* that t_i prefers to any of her acceptable safe-if-favorite schools, including $Q'_i(1)$. Thus, there will be some sub-profile Q^*_{-i} for which t_i is assigned to s^* when reporting Q_i and to $Q'_i(1)$ when reporting Q'_i and Q'_i cannot dominate Q_i.

7 Comparing the manipulability of DA^k and BOS^k

Many approaches allow to compare the manipulability of two mechanisms that both fail to be strategy-proof.15 In this last section, we propose a new approach for manipulability comparisons and use our characterization of undominated strategies to apply this approach to DA^k and BOS^k (see Corollary 3). We also use our characterization of dominant strategies to apply the criterion developed by Arribillaga and Massó (2015) to DA^k and BOS^k.

7.1 Comparing uncontroversial recommendations

As discussed in the Introduction, advising students not to play dominated strategies is uncontroversial because this advice does not depend on any assumption about other students’ strategies. Therefore, when it comes to comparing the manipulability of mechanisms, it seems natural to prefer a mechanism in which dominance excludes a larger set of strategies.

Strictly speaking, the set of undominated strategies of DA^k is not always included into the set of undominated strategies of BOS^k. This is because, when the only undominated strategies are dominant strategies in DA^k, by case (ii) in Proposition 1, these strategies may rank less than $\min\{k, \#R_i\}$ acceptable schools.

However, as discussed before, when a student has an undominated strategy that ranks less than $\min\{k, \#R_i\}$ acceptable schools, the student cannot lose from reporting a clean undominated strategy instead. If it is granted that playing a clean undominated strategies in DA^k and an undominated strategy in BOS^k are uncontroversial recommendations, then the set of strategies that

15 Besides the papers already cited, see e.g. Aleskerov and Kurbanov (1999), Maus et al. (2007a), Maus et al. (2007b), Andersson et al. (2014b), Andersson et al. (2014a) and Fujinaka and Wakayama (2015)).
can be ruled out by uncontroversial recommendations in \(DA^k \) is a superset of that in \(BOS^k \).

Corollary 3. For all \(k \in \mathbb{N}, t_i \in T, R_i, \) and \(Q_i \), if \(Q_i \) is a clean undominated strategy in \(DA^k \), then \(Q_i \) is also an undominated strategy in \(BOS^k \). The converse is not true if \(k \geq 2 \).

7.2 Comparing dominant strategies

Arribillaga and Massó (2015) introduce another approach to comparing the manipulability of mechanisms. They argue that a mechanism is less manipulable the more it provides students with a truthful dominant strategy. Mechanism \(B \) is at least as manipulable as mechanism \(A \) (in the sense of Arribillaga and Massó (2015)) if for all \(t_i \), whenever \(t_i \) has a truthful dominant strategy given \(R_i \) in \(B \), \(t_i \) also has a truthful dominant strategy given \(R_i \) in \(A \). Formally, for every profile of priorities \(F \) and capacities \(q \) and for all \(t_i \in T \),

\[
\{R_i \mid t_i \text{ has a truthful dominant strategy in } B\} \subseteq \{R_i \mid t_i \text{ has a truthful dominant strategy in } A\}. \tag{1}
\]

In the context of constrained school choice mechanisms \(M^k \), we consider that any strategy in which \(t_i \) reports her min\(\{k, \#R_i\} \) most preferred schools without switches is a truthful strategy.

Mechanism \(B \) is more manipulable than mechanism \(A \) if \(B \) is at least as manipulable as \(B \) but the converse is not true. In the context of constrained school choice mechanisms, this means that there exists a profile of priorities \(F \) and a profile of capacities \(q \) such that \(\subset \) replaces \(\subseteq \) in (1). Mechanism \(B \) is equally manipulable as \(A \) if \(A \) is at least as manipulable as \(B \) and \(B \) is at least as manipulable as \(A \), i.e., \(= \) replaces \(\subset \) in (1) (for all \(F \) and \(q \)).

The following result is a direct corollary of our characterization of dominant strategies in Propositions 1 and 3.

Corollary 4. For all \(k \geq 2 \), \(BOS^k \) is more manipulable than \(DA^k \).\(^{16}\)

Propositions 1 and 3 also enable the comparison of \(DA^k \) and \(BOS^k \) for different values of \(k \).

Corollary 5. For all \(k \leq m - 1 \), \(DA^{k+1} \) is less manipulable than \(DA^k \).

Corollary 6. For all \(k \in \mathbb{N}, BOS^{k+1} \) is equally manipulable as \(BOS^k \).

Figure 2 summarizes Corollaries 4 to 6. The corollaries in this section indicate that the advantage of \(DA \) over \(BOS \) in terms of manipulability carries over to \(DA^k \) and \(BOS^k \).

8 Conclusion

Corollary 4 confirms Proposition 3 in Pathak and Sönmez (2013) which shows that \(DA^k \) is less manipulable than \(BOS^k \) using a different criterion based on

\(^{16}\) For \(k = 1 \), \(DA^k \) and \(BOS^k \) are strategically equivalent and the two mechanisms are therefore equally manipulable.
\[DA > DA^{m-1} > \cdots > DA^1 = BOS = BOS^{m-1} = \cdots = BOS^1 \]

Figure 2: Manipulability comparisons of BOS^k and DA^k in the sense of Arribillaga and Massó (2015), where $A > B$ indicates that A is less manipulable than B and $A = B$ indicates that A and B are equally manipulable.

the nestedness of profiles that admit a truthful Nash equilibrium. Pathak and Sönmez (2013, Section 3) introduce yet another criterion based on the inclusion of profiles at which no player can manipulate. Although comparisons in the sense of Pathak and Sönmez (2013, Section 3) imply comparisons in the sense of Arribillaga and Massó (2015), the converse is not true.\(^{17}\) In particular, none of the results summarized in Figure 2 have any implication for comparisons in the sense of Pathak and Sönmez (2013, Section 3). Whether constrained school choice mechanisms can be compared using Pathak and Sönmez (2013, Section 3) and how these comparisons would play out is an open question.

Acknowledgments

We are grateful to Estelle Cantillon, Caterina Calsamiglia, Eun Jeong Heo, François Maniquet and John Weymark for helpful discussions and comments. We also thank Tommy Andersson, Paul Edelman, Jordi Massó, William Phan, Yves Sprumont, Myrna Wooders and participants to presentations at Université Catholique de Louvain, Université Saint-Louis, Vanderbilt University, the 9th Conference on Economic Design and the 13th Meeting of the Society for Social Choice and Welfare for useful questions and suggestions. Martin Van der Linden thanks the CEREC and the CORE for their hospitality during visits. Support from the ERC under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 269831, the Kirk Dornbush summer research grant, the National Science Foundation grant IIS-1526860 and the Fond National de la Recherche Scientifique (Belgium, mandat d’aspirant FC 95720) is gratefully acknowledged.

Appendix

A Additional notation

We introduce some additional notation and terminology we use in the Appendix.

For reported preferences Q_i and preferences R_i, we abuse the notation and write $Q_i = R_i$ to refer to case (i) in Proposition 1, that is $Q_i = R_i$ means that Q_i is of the form $Q_i : R_i(1) \ldots R_i(\#R_i) \ t_i \ldots$. For any two strategies Q_i and Q_i', we also write $Q_i = Q_i'$ if both strategies share the same set of ranked schools and report those schools in the same order. Similarly $Q_i \neq R_i$ means that Q_i is not of the form $Q_i : R_i(1) \ldots R_i(\#R_i) \ t_i \ldots$.

\(^{17}\) See Arribillaga and Massó (2015) and Van der Linden (2016) for a discussion of the differences between the two criteria.
The higher priority of student t_g over t_h at school s_j is denoted $t_g F_j t_h$. Given a strategy Q_i, the truncation of Q_i after school s is another strategy Q'_i obtained from Q_i by deleting all schools $s' \in Q_i$ reported after s.

B Proofs for dominant and undominated strategies in DA^k

B.1 Preliminary results

Lemma 1

Let Q'_i be any strategy of DA^k which ranks exactly $\min\{k, \#R_i\}$ acceptable schools without switch, including all acceptable schools ranked in Q_i. For any strategy \tilde{Q}_i, let $R^{\tilde{Q}_i}$ be any preference relation over $S \cup \{t_i\}$ of the form

$$R^{\tilde{Q}_i} : \tilde{Q}_i, t_i, Q^{S \setminus \tilde{Q}_i},$$

where $Q^{S \setminus \tilde{Q}_i}$ is any sub-orderings of the schools in $S \setminus \tilde{Q}_i$. Because DA is non-manipulable (Dubins and Freedman, 1981), we have

$$DA_i(Q'_i, Q^m_i) R^{\tilde{Q}_i} DA_i(Q_i, Q^m_i), \quad \text{for all } Q^m_i.$$

In particular,

$$DA_i(Q'_i, Q^R_{-i}) R^{\tilde{Q}_i} DA_i(Q_i, Q^R_{-i}),$$

for all Q^R_{-i}, with $\#Q^R_k \leq k$ for all $t_j \in T \setminus \{t_i\}$.

But because DA^k is obtained from DA by considering only the profiles Q^k with $\#Q^k_j \leq k$ for all $t_j \in T$, the last displayed relation implies

$$DA^k_i(Q'_i, Q^R_{-i}) R^{\tilde{Q}_i} DA^k_i(Q_i, Q^R_{-i}), \quad \text{for all } Q^R_{-i}. $$

By construction, Q'_i is without switch, and therefore, the last displayed relation implies

$$DA^k_i(Q'_i, Q^R_{-i}) R_i DA^k_i(Q_i, Q^R_{-i}),$$

for all Q^R_{-i} such that $DA^k_i(Q'_i, Q^R_{-i}), DA^k_i(Q_i, Q^R_{-i}) \in (Q'_i \cup \{t_i\})$. \(2\)

Clearly, by definition of DA^k,

$$DA^k_i(Q'_i, Q^R_{-i}) \in (Q'_i \cup \{t_i\}), \quad \text{for all } Q^R_{-i},$$

and (2) simplifies to

$$DA^k_i(Q'_i, Q^R_{-i}) R_i DA^k_i(Q_i, Q^R_{-i}),$$

for all Q^R_{-i} such that $DA^k_i(Q_i, Q^R_{-i}) \in (Q'_i \cup \{t_i\})$. \(3\)

Now, because every acceptable school ranked in Q_i is ranked in Q'_i, the only cases (if any) in which $DA^k_i(Q_i, Q^R_{-i}) \notin (Q'_i \cup \{t_i\})$ is when $t_i F_i DA^k_i(Q_i, Q^R_{-i})$. But because Q'_i only ranks acceptable schools, $DA^k_i(Q'_i, Q^R_{-i}) R_i t_i$ for all Q_{-i} and therefore, in these cases too, $DA^k_i(Q'_i, Q^R_{-i}) R_i DA^k_i(Q_i, Q^R_{-i})$.

19
Thus, (3) further simplifies to
\[\text{DA}^k_i(Q', Q_{-i}^*) R_i \text{ DA}^k_i(Q, Q_{-i}^*), \quad \text{for all } Q_{-i}^*. \tag{4} \]

Then, if in addition of (4)
\[\text{DA}^k_i(Q', \tilde{Q}_{-i}) P_i \text{ DA}^k_i(Q, \tilde{Q}_{-i}), \quad \text{for some } \tilde{Q}_{-i}, \]

\(Q'_i\) would weakly dominate \(Q_i\). But this would contradict the assumption that \(Q_i\) is undominated in \(\text{DA}^k\). Therefore, we must in fact have
\[\text{DA}^k_i(Q, Q_{-i}^*) R_i \text{ DA}^k_i(Q', Q_{-i}^*), \quad \text{for all } Q_{-i}^*. \tag{5} \]

But because \(R\) is antisymmetric, (4) and (5) imply
\[\text{DA}^k_i(Q', Q_{-i}^*) = \text{DA}^k_i(Q, Q_{-i}^*), \quad \text{for all } Q_{-i}^*, \]

the desired result.

Lemma 2

Let \(B\) be the set of schools that \(t_i\) ranks above \(\hat{s}\) in \(Q_i\). These are the schools \(t_i\) applied to in the course of \(\text{DA}^k\) under \((Q_i, Q_{-i})\), but did not get assigned to. Because \(t_i\) was rejected from the schools in \(B\), it must be that, in the list of assignments \(\text{DA}^k(Q_i, Q_{-i})\), there is another student assigned to each of the available seats in each of the schools in \(B\). Let this set of students be \(A \subset T\).

Now construct \(Q_{-i}^*\) as follows :

- For all \(t_j \in A\), let \(Q_j^*\) be the strategy in which \(t_j\) ranks only \(\text{DA}^k_i(Q, Q_{-i})\).
- For all \(t_h \in T \setminus \{A \cup \{t_i\}\}\), let \(Q_h^*\) be any strategy in which \(t_h\) ranks neither \(s^*\) nor \(\hat{s}\).

By construction, for every school \(s_j \in B\), there are at least \(q_j\)-students with higher priority at \(s_j\) than \(t_i\) who rank \(s\) first in \(Q_{-i}^*\). Thus, \(t_i\) will be rejected from any of these schools over the course of \(\text{DA}^k\) given that the reported profile is \((Q_i, Q_{-i}^*)\). Therefore, \(\text{DA}^k_i(Q, Q_{-i}^*) = \hat{s}\) implies
\[\hat{s} Q_i \text{ DA}^k_i(Q, Q_{-i}^*). \]

By construction again, no students rank \(\hat{s}\) in \(Q_{-i}^*\). Therefore, \(\text{DA}^k_i(Q, Q_{-i}^*) = \hat{s}\) implies
\[\text{DA}^k_i(Q, Q_{-i}^*) Q_i \hat{s}. \]

Because \(Q_i\) is antisymmetric, the last two displayed relations imply
\[\text{DA}^k_i(Q, Q_{-i}^*) = \hat{s}, \]

which proves (i).

Again, by construction, no-one applies to \(s^*\). Thus, for any \(Q_i^*\) with \(s^* \in Q_i^*\), we have
\[\text{DA}^k_i(Q_i^*, Q_{-i}^*) Q_i^* s^*, \]

which proves (ii).
Lemma 3

The proof is by contradiction. Lemma 1 tells us that there exists a strategy Q'_i which ranks $\min\{k, \#R_i\}$ acceptable schools without switch including all the acceptable schools in Q_i and which satisfies

$$DA^k_i(Q'_i, Q_{-i}) = DA^k_i(Q_i, Q_{-i}), \quad \text{for all } Q_{-i}. \quad (6)$$

We break the proof down in three cases which correspond to the three possible sources of uncleanness (the labeling of the sources of uncleanness matches the labeling in the text).

(ii) unacceptable schools are ranked in Q_i.

Let $\not x$ be any unacceptable school ranked in Q_i. By (6) and because only acceptable schools are ranked in Q'_i, $\not x \notin \text{Range}(Q_i)$. But this implies $\not x$ is ranked after a safe set, proving that Q_i contains a safe set and that (2) holds.

(i) Q_i contains switches.

Take any schools s and s' which are switched in Q_i. Without loss of generality, let $s Q_i s'$ and $s' P_i s$. In order to derive a contradiction, assume that either s or s' are not ranked after a safe set in Q_i (potentially because Q'_i does not contain a safe set).

Since $s Q_i s'$ we have $s \in \text{Range}(Q_i)$. By point (ii) this means that s is an acceptable school of Q_i. Because $s' P_i s$, s' is also an acceptable school ranked in Q_i. Hence, by construction of Q'_i, both s and s' are ranked in Q'_i.

By Lemma 2, there exists Q^*_i such that $DA^k_i(Q_i, Q^*_i) = s$ and s' is accessible. But then $s' \in Q'_i$ implies

$$DA^k_i(Q'_i, Q^*_i) \not x s', Q'_i s,$$

and hence $DA^k_i(Q'_i, Q^*_i) \not s = DA^k_i(Q_i, Q^*_i)$, contradicting (6).

(iii) Q_i contains less than $\min\{k, \#R_i\}$ acceptable schools.

Let s' be any acceptable school ranked in Q'_i but not in Q_i. In order to derive a contradiction, assume that Q_i contains no safe set. The absence of safe set ranked in Q_i implies that $DA^k_i(Q_i, Q_{-i}) = t_i$ for some Q_{-i}. Then by Lemma 2, there exists Q^*_i such that $DA^k_i(Q_i, Q^*_i) = t_i$ and s' is available. But then

$$DA^k_i(Q'_i, Q^*_i) Q'_i s' \not t_i,$$

which implies $DA^k_i(Q'_i, Q^*_i) \not DA^k_i(Q_i, Q^*_i)$ contradicting (6).

B.2 Characterizing dominant strategies

Proposition 1

 Sufficiency.

(i) The sufficiency of (i) follows directly from the fact that DA is non-manipulable. (Dubins and Freedman, 1981). See the beginning of the proof of Lemma 1 for an explanation of how this extends to DA^k.

21
(ii) By construction, strategy Q_i ranks the q most preferred schools in R_i without switches. Following the same argument as in Lemma 1,

$$DA_k^k(Q_i, Q_{-i}) R_i DA_k^k(Q_i', Q_{-i}), \quad \text{for all } Q_i' \text{ and all } Q_{-i}, \text{ such that } DA_k^k(Q_i, Q_{-i}) R_i R_i(q).$$

But by definition of a safe set and because Q_i is without switches, if $R_i(q) R_i DA_k^k(Q_i', Q_{-i}),$ we also have

$$DA_k^k(Q_i, Q_{-i}) R_i R_i(q) R_i DA_k^k(Q_i', Q_{-i}).$$

Hence $DA_k^k(Q_i, Q_{-i}) R_i DA_k^k(Q_i', Q_{-i})$ holds for all Q_i' and all $Q_{-i},$ and we are done.

Necessity.
The proof is by contradiction. Assume that there exists a dominant strategy Q_i for which neither (i) nor (ii) hold.

Because Q_i is a dominant strategy, Q_i is also an undominated strategy. This means Lemma 3 applies, and there exists a clean strategy Q_i' which is equivalent to $Q_i,$ and is therefore also a dominant strategy.

Case 1: $Q_i' \neq R_i.$

Because Q_i' is without switches, without unacceptable schools, and $\min\{k, \#R_i\}$ schools are ranked in Q_i', there is an acceptable school s^* which is not ranked in Q_i' and which is such that $s^* P_i w^{Q_i'}.$ By construction of Q_i' and because Q_i violates both (i) and (ii), $w^{Q_i'}$ is not ranked after any safe set in Q_i' and hence $w^{Q_i'} \in \text{Range}(Q_i').$ But then by Lemma 2, there is a subprofile Q_{-i}^* and a strategy without switch Q_i^* such that $DA_k^k(Q_i', Q_{-i}^*) = w^{Q_i'}$ and $DA_k^k(Q_i^*, Q_{-i}^*) R_i s^*$, contradicting the fact that Q_i' is a dominant strategy.

Case 2: $Q_i' = R_i.$

Because Q_i' is without switch, Q_i' cannot be a safe strategy (otherwise (ii) would hold for $Q_i,$ by construction of Q_i' from Q_i'). By Lemma 2 again, if there is an acceptable school $s^* \notin Q_i'$, there is a subprofile Q_{-i}^* and a strategy Q_i^* such that $DA_k^k(Q_i', Q_{-i}^*) = t_i$ and $DA_k^k(Q_i^*, Q_{-i}^*) = s^*$, contradicting the fact that Q_i' is a dominant strategy. Therefore, all acceptable schools are ranked first in Q_i' without switch, and those are the only schools ranked in $Q_i'.$ But because Q_i is unsafe, Q_i is unsafe too, which means no unacceptable school can be ranked in $Q_i.$ Thus, it is also the case that all acceptable schools are ranked first in Q_i without switch, and that those are the only schools ranked in $Q_i,$ contradicting (i).

Corollary 1

It is easy to see that if for some $Q_{-i},$ t_i is assigned to an unacceptable school or prefers a school s with an available seat to her assignment, strategy Q_i cannot be dominant. Respectively, ranking no acceptable school or ranking s as the only acceptable school dominates Q_i given Q_{-i}.

To see that t_i is not involved in a blocking pair, take any school s_y such that $s_j P_i DA_k^k(Q_i, Q_{-i}).$ By Proposition 1, s_j is an acceptable school and t_i applied and was rejected from $s_j.$ At the round at which t_i was rejected from $s_j,$ there
are q_j students $t_g \neq t_i$ assigned to s_j with higher priority at s_j than t_i. If any student t_h is rejected from s_j in a later round of DA^k, the seat in s_j previously occupied by t_h is assigned to another student t_i with higher priority at s_j than t_h, and hence with higher priority at s_j than t_i. Therefore, there cannot be any student t_h with $t_i \in F_j \setminus t_h$ such that $DA^k_h(Q) = s_j$. This means t_i cannot be in a blocking pair with s_j.

\section*{B.3 Characterizing undominated strategies}

\textbf{Lemma 4}

By Proposition 1, because Q_i is not dominant, we have $Q_i \neq R_i$ and the q most preferred schools of Q_i do not form a safe set covering the q most preferred schools of R_i for any $q \leq k$. Thus, either

(i) Q_i contains a safe set but there is an acceptable school $s \in R_i$ with $s \notin Q_i$ such that $s P_i w_{\text{Range}(Q_i)}$,

(ii) Q_i is unsafe.

We first show by contradiction that Q_i is unsafe. Assume to the contrary that Q_i is clean. As $\#Q_i < k$, if Q_i is clean, then $\#Q_i = \#R_i$. Thus, either Q_i contains switches contradicting the definition of a clean strategy, or Q_i contains no switches and $Q_i = R_i$, which contradicts the assumption that Q_i is not dominant.

By Lemma 3, because Q_i is an undominated strategy, Q_i contains a safe set S^g, which rules out case (i) and we need only consider case (ii). By Lemma 3 again, the safe set S^g contained in Q_i is such that any schools (s, s') that are switched in Q_i are ranked after S^g.

Now, the strategy Q'_i that ranks all the schools in $\text{Range}(Q_i)$ as well as s, without switch. Because $\#Q_i < k$, Q'_i is a well-defined strategy for DA^k.

By an argument similar to the one used in the proof of Lemma 1, DA^k is strategy-proof for any agent with no more than k acceptable schools. Therefore,

$$DA^k_i(Q'_i, Q_{-i}) \leq DA^k_i(Q_i, Q_{-i}),$$

for all Q_{-i}.

But because Q'_i is without switch on $\text{Range}(Q_i) \cup \{s\}$ and on $\text{Range}(Q'_i)$, we have

$$DA^k_i(Q'_i, Q_{-i}) \sqsubseteq R_i DA^k_i(Q_i, Q_{-i}),$$

for all Q_{-i}. \hfill (8)

Now because $s \notin Q_i$, Lemma 2 applies and there exists Q^*_i such that

$$DA^k_i(Q'_i, Q^*_i) = s P_i w_{\text{Range}(Q_i)} = DA^k_i(Q_i, Q^*_i),$$

which together with (8) implies that Q'_i dominates Q_i, the desired result.

\textbf{Proposition 2}

\textbf{Necessity.}

Let Q_i be any undominated strategy of DA^k. We show that if Q_i is not a dominant strategy in DA^k, then (ii) holds. First, we show that $\#\text{Range}(Q_i) = k$ for any Q_i that is undominated but not dominant in DA^k.

23
Clearly we cannot have \(\#\text{Range}(Q_i) > k \) as that would mean \(Q_i \) is not a well-defined strategy in \(DA^k \). So in order to derive a contradiction, assume that \(\#\text{Range}(Q_i) < k \). This means that either (a) \(Q_i \) contains a safe set with less than \(k \) schools, or (b) \(\#Q_i < k \). But by Lemma 4 and the fact that \(Q_i \) is undominated but not dominant, (b) yields a contradiction. Thus, (a) must hold. Now, consider the strategy \(Q'_i \) constructed from \(Q_i \) by removing a ranked school ranked after the safe set. Strategy \(Q_i \) is equivalent to \(Q'_i \). Clearly, \(\#Q'_i < k \) and because \(Q'_i \) is equivalent to \(Q_i \), \(Q'_i \) is also undominated but not dominant. Again, this contradicts Lemma 4 and hence \(\#\text{Range}(Q_i) = k \).

We now prove each of \(Q_i \)'s properties described in (ii).

No switch.

By Lemma 3, no switched schools are in \(\text{Range}(Q_i) \). Since \(\#\text{Range}(Q_i) = k \) for any \(Q_i \) that is undominated but not dominant in \(DA^k \), \(Q_i \) contains no switches.

\(Q_i \) ranks \(k \) acceptable schools

By Lemma 3, if \(Q_i \) contains any unacceptable school \(s \), then \(s \) is not in \(\text{Range}(Q_i) \). Again, as \(\#\text{Range}(Q_i) = k \), this implies that \(s \) is ranked in \(Q_i \).

No minimal safe set “dominates” \(Q_i \)

We prove the contrapositive: if a minimal safe set “dominates” \(Q_i \), then it satisfies the properties described in the statement of the proposition, then \(Q_i \) is dominated.

Let \(MMS \) be some minimal safe set of schools with \(\#S^{MMS} \leq k \) and \(S^{MMS} \not\subseteq Q_i \), such that for all \(s \in Q_i \), with \(s \not\in S^{MMS} \), we have \(w^{S^{MMS}}(s) \). Consider the strategy \(Q'_i \) which consists in only ranking \(S^{MMS} \) without switch. Because \(\#S^{MMS} \leq k \), \(Q'_i \) is a well-defined strategy in \(DA^k \). By an argument we have already used many times, because \(DA^k \) is strategy-proof for every student who has no more than \(\#S^{MMS} \leq k \) acceptable schools, and because \(Q^{S^{MMS}} \) is without switch

\[
DA^k_i(Q_i^{S^{MMS}}, Q_{-i}) R_i DA^k_i(Q_i, Q_{-i}), \quad \text{for all } Q_{-i} \text{ such that } DA^k_i(Q_i, Q_{-i}) \in Q_i^{S^{MMS}} \cup \{t_i\}.
\]

But because \(w^{S^{MMS}} \) \(R_i \) \(s \) for all \(s \in Q_i \) with \(s \not\in S^{MMS} \), the last displayed relation generalizes to

\[
DA^k_i(Q_i^{S^{MMS}}, Q_{-i}) R_i DA^k_i(Q_i, Q_{-i}), \quad \text{for all } Q_{-i}. \tag{9}
\]

Now because \(S^{MMS} \not\subseteq Q_i \), there exists \(s^* \in Q_i^{S^{MMS}} \) such that \(s^* \not\in Q_i \), and by Lemma 2, there exists \(Q^*_i \) such that

\[
DA^k_i(Q_i^{S^{MMS}}, Q^*_i) = s^* \quad R_i \quad w^{S^{MMS}} \quad R_i \quad DA^k_i(Q_i, Q^*_i).
\]

But because \(s^* \not\in Q_i \), \(s^* \neq DA^k_i(Q_i, Q^*_i) \), and because \(R_i \) is antisymmetric, the last relation in fact yields

\[
DA^k_i(Q_i^{S^{MMS}}, Q^*_i) = s^* \quad P_i \quad DA^k_i(Q_i, Q^*_i). \tag{10}
\]

Together, (9) and (10) show that \(Q_i^{S^{MMS}} \) dominates \(Q_i \), the desired result.
Sufficiency.

Clearly, if Q_i is a dominant strategy (case (i)), Q_i is undominated. Thus, assume that Q_i is not a dominant strategy but satisfies (ii). We need to prove that Q_i is undominated. In order to derive a contradiction, assume that there exists a strategy that dominates Q_i.

Because the “domination” relation is transitive, because there are a finite number of strategies and because some strategy dominates Q_i, there exists an undominated strategy Q_i'' that dominates Q_i. Also, by Lemma 1, there exists a clean undominated strategy Q_i' that is equivalent to Q_i''. In particular, Q_i' dominates Q_i too.

There are two cases.

Case 1: Q_i' is unsafe.

Note that if Q_i and Q_i' rank the same schools, because both Q_i and Q_i' are without switch (by (ii) for Q_i and by construction for Q_i'), we have $Q_i = Q_i'$. Hence, Q_i and Q_i' cannot dominate Q_i.

Thus, suppose that Q_i' does not rank the same schools as Q_i, i.e., there exists $s^* \in Q_i$ with $s^* \notin Q_i'$. By (ii), s^* is acceptable. If $s^* \notin \Range(Q_i)$, then Q_i is safe. But a safe strategy Q_i ranking only acceptable schools cannot be dominated by an unsafe strategy Q_i'.

Thus, suppose that $s^* \in \Range(Q_i)$. Because Q_i' is unsafe, $DA^k_i(Q_i', Q_{-i}) = t_i$ for some Q_{-i}. But then by Lemma 2, there exists Q_{-i}^* such that

$$DA^k_i(Q_i, Q_{-i}^*) = s^* P_i t_i = DA^k_i(Q_i', Q_{-i}^*),$$

contradicting the assumption that Q_i' dominates Q_i.

Case 2: Q_i' is safe.

As Q_i' contains a safe set, $\Range(Q_i')$ is a safe set. In fact, $\Range(Q_i')$ is a minimal safe set. Indeed, because Q_i' is without switch, if $\Range(Q_i') \setminus w^{\Range(Q_i')}$ is a safe set, then $\Range(Q_i') = \Range(Q_i') \setminus w^{\Range(Q_i')}$, a contradiction.

Thus, by (ii), either (a) $\Range(Q_i') \subseteq Q_i$ or (b) $s^* P_i w^{\Range(Q_i')}$ for some $s^* \in Q_i$ with $s^* \notin \Range(Q_i')$.

Subcase (a)(1): (a) holds and Q_i' is a dominant strategy.

Then by Proposition 1, Q_i is dominant too since Q_i is without switches. This contradicts the assumption that Q_i' dominates Q_i.

Subcase (a)(2): (a) holds and Q_i' is not dominant.

If $Q_i' = Q_i$, we have a direct contradiction. If instead $Q_i' \neq Q_i$, then $\Range(Q_i') \subseteq Q_i$ implies that $\#Q_i' < k$ as both Q_i and Q_i' are without switches. Therefore, Lemma 4 applies and Q_i' is dominated, a contradiction.

Subcase (b): (b) holds.

By the definition of the range, $DA^k_i(Q_i', Q_{-i}) = w^{\Range(Q_i')}$ for some Q_{-i}. But then, by Lemma 2, there exists Q_{-i}^* such that

$$DA^k_i(Q_i, Q_{-i}^*) = s^* P_i w^{\Range(Q_i')} = DA^k_i(Q_i', Q_{-i}^*),$$

contradicting the assumption that Q_i' dominates Q_i.
C Dominant and undominated strategies in BOS^k

C.1 Preliminary results

Lemma 5

In order to derive a contradiction, assume that $s \in \text{Range}(Q_i)$ and s is unacceptable. We construct Q_i' dominating Q_i in BOS^k, contradicting the assumption that Q_i is an undominated strategy. The construction of Q_i' is step by step:

- Step 1: If $Q_i(1) \in R_i$, then $Q_i'(1) := Q_i(1)$. Else $Q_i'(1) := R_i(1)$.
 -
- Step ℓ: If $Q_i(\ell) \in R_i$ and $Q_i(\ell)$ is not yet ranked in $Q_i'(h)$ for $h < \ell$, then $Q_i'(\ell) := Q_i(\ell)$. Else $Q_i'(\ell)$ is the preferred school according to R_i that is not yet ranked in $Q_i'(h)$, for $h < \ell$.
 -
- Last step ℓ^* is the minimal step such that either $\ell^* = \# \text{Range}(Q_i)$ or all acceptable schools are ranked in Q_i'.

We now prove that Q_i' dominates Q_i in BOS^k. First, we show by contradiction that for all Q_{-i}, we have

$$BOS^k_i(Q_i', Q_{-i}) \supseteq R_i \setminus BOS^k_i(Q_i, Q_{-i}).$$ \hspace{1cm} (11)

Assume that there exists Q_{-i}^* such that

$$BOS^k_i(Q_i, Q_{-i}^*) = P_i \setminus BOS^k_i(Q_i', Q_{-i}^*).$$ \hspace{1cm} (12)

This implies that s^Q is acceptable as, by construction, Q_i' contains no unacceptable schools.

Let r_Q^s be the round of BOS^k at which t_i is assigned to s^Q in BOS^k_i given profile (Q_i, Q_{-i}^*). Let $r^s_{Q'}$ be the rank of school s^Q in strategy Q_i'. If t_i is not assigned a school before round $r^s_{Q'}$ of BOS^k given profile (Q_i', Q_{-i}^*), then t_i applies to s^Q at round $r^s_{Q'}$. By construction, t_i ranks the acceptable school s^Q at a weakly lower rank in Q_i' than in Q_i, which implies that $r^s_{Q'} \leq r^s_Q$.

Now, since by definition $BOS^k_i(Q_i, Q_{-i}^*) = s^Q$, the set of $t_j \neq t_i$ who apply to s^Q before round r_Q^s, together with the set of $t_j \neq t_i$ who apply to s^Q in round $r^s_{Q'}$ and have higher priority than t_i at s^Q, has less than q_{QO} students. But then, the set of $t_j \neq t_i$ who apply to s^Q before round $r^s_Q < r_Q$, together with the set of $t_j \neq t_i$ who apply to s^Q in round $r^s_{Q'}$ and have higher priority than t_i at s^Q also has less than q_{QO} students. Therefore, t_i is assigned a school at a round $r'' \leq r^s_{Q'}$ of the algorithm BOS^k for profile (Q_i', Q_{-i}^*), or in other words

$$BOS^k_i(Q_i', Q_{-i}^*) \supseteq Q_i' \setminus s^Q.$$ \hspace{1cm} (13)

Now, by construction of Q_i', for all ranks $h \in \{1, \ldots, r'\}$, the school $Q_i'(h)$ satisfies

$$Q_i'(h) \cap Q_i' \cap s^Q,$$ \hspace{1cm} (13)
and is such that either

(i) \(Q'_i(h) = Q_i(h) \), or

(ii) \(Q'_i(h) \ R_i \ s^Q \).

In the construction, (ii) corresponds to the cases in which either \(Q_i(h) \not\in R_i \), or \(Q_i(h) \in R_i \) but \(Q_i(h) = Q'_i(h) \) for some \(h < h \). In these cases, the construction prescribes to set \(Q'_i(h) \) to the most preferred school according to \(R_i \), which is not yet ranked in \(Q'_i(h) \), for some \(h < h \). Because we only look at \(h \) such that (13) holds, \(s^Q \) has not yet been ranked, and hence, (ii) must hold.

Now, let us compare the effect of ranking \(Q_i \) with the effect of ranking \(Q'_i \) round by round in \(BOS^k \), for rounds \(r \leq r' \) (when the students \(t_j \not= t_i \) rank \(Q_{-i}^* \)). Because \(r'' \leq r_{Q'}^Q \leq r_Q \), \(t_i \) is rejected from the school she applies to in every round \(r < r'' \) when ranking \(Q_i \). Thus at each round \(r < r'' \), either

1. (i) holds and \(t_i \) is also rejected at round \(r \) when ranking \(Q'_i \),

2. (i) does not hold and (ii) holds, that is

\[
Q'_i(h) \ P_i \ s^Q
\]

(14)

Then either

(a) \(t_i \) is rejected from \(Q'_i(h) \) at round \(r \), or

(b) \(t_i \) is accepted at \(Q'_i(h) \) at round \(r \).

But given (14), 2.(b) clearly contradicts (12). Thus \(t_i \) must be rejected at every round \(r < r_{Q'}^Q \) of \(BOS^k \) when ranking \(Q'_i \).

Now, this implies that \(BOS^k \) will move on to round \(r' \), implying \(r'' = r' \).

But by (13), this means

\[
BOS^k_i(Q'_i, Q_{-i}^*) = s^Q,
\]

again contradicting (12). Hence, (11) must hold.

In order to prove that the constructed \(Q'_i \) dominates \(Q_i \), there remains to show that there exists \(Q^*_{-i} \) such that

\[
BOS^k_i(Q'_i, Q^*_{-i}) \ P_i \ BOS^k_i(Q_i, Q^*_{-i}).
\]

By the definition of \(Range(Q_i) \), for every school \(s \in Range(Q_i) \), there exists \(Q^*_{-i} \) such that

\[
BOS^k_i(Q_i, Q^*_{-i}) = s.
\]

This is also true for any unacceptable school \(s' \in Range(Q_i) \). By assumption, there exists an unacceptable \(s' \in Range(Q_i) \). Since \(Q'_i \) contains only acceptable schools, we have that either

18 Although the schools ranked before rank \(r \) may differ in \(Q_i \) and \(Q'_i \), the fact that \(t_i \) was not assigned to any school yet means that the set of students assigned before round \(r \) is the same for \((Q_i, Q^*_{-i}) \) and for \((Q'_i, Q^*_{-i}) \) and that those students are assigned to the same schools. Hence, the remaining students in round \(r \) are the same and apply to the same schools for \((Q_i, Q^*_{-i}) \) and for \((Q'_i, Q^*_{-i}) \).
• $BOS^k_i(Q'_i, Q'^*_i)$ is acceptable, or
• $BOS^k_i(Q'_i, Q'^*_i) = t_i$.

In both cases we have $BOS^k_i(Q'_i, Q'^*_i)$, P_i, s' and therefore Q'^*_i qualifies for Q'^*_i.

Lemma 6

As the proof of sufficiency is obvious, we only prove necessity. We prove the contrapositive. Assume that neither (i) nor (ii) are true. Consider any sub-profile Q'^*_i constructed as follows

• Take any set of $q_{Q'_i(1)}$ students $t_j \neq t_i$ among the students with higher priority at $Q'_i(1)$ than t_i, and let $Q'^*_j(1) := Q_i(1)$.

...

• For any $\ell \in \{2, \ldots, \#Q'_i\}$ take $q_{Q'_i(\ell)}$ students t_k whose reported preferences have not been constrained yet and let $Q'^*_k(1) := Q_i(\ell)$.

Because (i) is false, there are at least $q_{Q'_i(1)}$ students in T with higher priority at school $Q'_i(1)$ than t_i. Because (ii) is false, any oversupplied set of schools contains more than k schools. Therefore, \{Q_i(1), \ldots, Q_i(\#Q_i)\} is not an oversupplied set of schools. Hence, there are enough students to construct the sub-profile Q'^*_i, described above and Q'^*_i is well-defined.

Because $Q_i(1)$ is not safe-if-favorite for t_i we have $BOS^k_i(Q_i, Q'^*_i) \neq Q_i(1)$ by construction of Q'^*_i. By construction again, for every $s \in Q_i$ with $s_j \neq Q'_i(1)$, there are at least q_{j} students who apply to s_j in the first round of BOS^k_i. Therefore, $BOS^k_i(Q_i, Q'^*_i) \neq s_j$ and we have $BOS^k_i(Q_i, Q'^*_i) = t_i$, showing that Q_i is not a safe strategy.

Lemma 7

The proof is by contradiction. Assume that Q_i dominates Q'_i and that Q_i is unsafe. If Q'_i is safe, it is obvious that the unsafe strategy Q_i does not dominate the safe Q'_i given that Q'_i contains only acceptable schools. Therefore, we focus on the case in which Q'_i is unsafe too.

We show that Q_i does not dominate Q'_i. Again, this is trivially true if $Q_i = Q'_i$ and we therefore focus on the case $Q_i \neq Q'_i$.

Let r be the lowest rank for which $Q_i(r) \neq Q'_i(r)$. There are two cases.

Case 1: $r > \#Q'_i$

This case implies that strategy Q'_i is the truncation of Q_i after rank $\#Q'_i$. Therefore, we have $\#Q'_i = \#R_i < k$. As a consequence, $Q_i(r)$ is unacceptable because all acceptable schools are ranked in Q_i before rank r. Because Q_i is
unsafe, there exists Q^*_{-i} such that $BOS^k_i(Q_i, Q^*_{-i}) = Q_i(r)$; that is, t_i is assigned to an unacceptable school.\footnote{This is proven formally in Lemma 8, see below. The construction of Q^*_{-i} follows a procedure similar to the one introduced in the proof of Lemma 6.} As all schools ranked in Q'_i are acceptable, t_i strictly prefers her assignment when ranking Q'_i and other students rank Q^*_{-i}. This shows that strategy Q_i does not dominate Q'_i.

Case 2: $r \leq \#Q'_i$.

We construct Q^*_{-i} such that

$$BOS^k_i(Q'_i, Q^*_{-i}) \cdot P_i \cdot BOS^k_i(Q_i, Q^*_{-i}) = t_i,$$

that is t_i is assigned to an acceptable school when playing Q'_i and unassigned when playing Q_i. We consider two constructions for two different cases.

Construction 1 : $Q'_i(r) \in Q_i$.

- Take the $q_{Q_i(1)}$ students $t_j \neq t_i$ with the highest priority at school $Q_i(1)$ and let $Q'_j : Q_i(1)$,
- For all $s \in Q_i$ with $s \neq Q_i(1)$ and $s \neq Q'_i(r)$, take q_s students t_u whose reported preferences are not yet constrained and let $Q^*_u : s$,
- Take $q_{Q_i(r)} - 1$ students t_v whose reported preferences are not yet constrained and let $Q^*_v : Q'_i(r)$,
- Take a student t_g whose reported preferences are not yet constrained. If $t_i F_{Q'_i(r)} t_g$ then Q^*_g is the truncation of Q'_i after school $Q'_i(r)$, else it is the truncation of Q_i after school $Q_i(r)$ with in addition $Q_g(r + 1)^* := Q'_g(r)$.
- Students whose preference is not specified yet do not rank school $Q'_i(r)$.

We show that Q^*_{-i} is well-defined. First, Q_i is unsafe and hence, $Q_i(1)$ is not safe-if-favorite. As a result, there are enough students t_j in T for the first step of the construction. Second, there are enough students to construct Q^*_{-i} because the number of students whose preference is constrained (including student t_i) is equal to the sum of the seats available at the schools ranked in the unsafe Q_i.\footnote{Recall that $Q_i(r) \in Q_i$.} As Q_i is unsafe, the sum of the seats available at these schools is no greater than n by Lemma 6. Therefore, Q^*_i can be constructed.

By construction, $BOS^k_i(Q_i, Q^*_{-i}) = t_i$, as all the seats at all the schools ranked in Q_i are allocated at round 1 of the algorithm to other students than t_i, except for one seat at school $Q'_i(r)$ if $r \neq 1$. This last seat is allocated to t_i at round r for strategy Q'_i and is allocated to t_g at round r or $r + 1$ for strategy Q_i.

Construction 2 : $Q'_i(r) \notin Q_i$.

The construction of Q^*_{-i} is almost identical. The only difference is that no student t_v is constrained to rank $Q^*_v : Q'_i(r)$ and that t_g’s preferences are not constrained.

C.2 Characterizing dominant strategies

Proposition 3

The sufficiency of the two conditions is obvious.
For the case in which \(\#R_i = 1 \) and \(R_i(1) \) is not safe-if-favorite, the necessity of condition (ii) is a corollary of the fact that a single class of strategies \(Q_i = R_i \) qualify as undominated strategies, as proven in Proposition 4 (see below).

To complete the proof, let us show that condition (i) is necessary when \(\#R_i \geq 2 \). We consider two cases.

Case 1: \(R_i(1) \) is safe-if-favorite but \(Q_i(1) \neq R_i(1) \).

By Proposition 4, such \(Q_i \) is not an undominated strategy in \(BOS^k \). Hence, \(Q_i \) is not a dominant strategy either.

Case 2: \(R_i(1) \) is not safe-if-favorite.

We prove that there exists no dominant strategies by showing the existence of \(Q'_i \) and \(Q''_i \) such that

- \(Q'_i \) and \(Q''_i \) are undominated strategy in \(BOS^k \) and
- \(Q'_i \) and \(Q''_i \) are not equivalent strategies.

Let \(Q'_i \) be such that \(Q'_i(1) := R_i(1) \) and \(Q'_i \) contains \(\min\{k, \#R_i\} \) acceptable schools. Strategy \(Q'_i \) is an undominated strategy by Proposition 4. Let \(Q''_i \) be such that \(Q''_i(1) := R_i(2) \) and \(Q''_i \) contains \(\min\{k, \#R_i\} \) acceptable schools. Strategy \(Q''_i \) is an undominated strategy by Proposition 4 because \(\#R_i \geq 2 \) and \(R_i(1) \) is not safe-if-favorite. Observe that this is true whether or not \(R_i(2) \) is safe-if-favorite.

There exists \(Q^*_{-i} \) – for example \(Q^*_{j} \) contains no school for all \(t_j \neq t_i \) – for which \(Q'_i \) and \(Q''_i \) yield different assignments and they are hence not equivalent.

Corollary 2

We first show that \(t_i \) is not part of a blocking pair. By Proposition 3, if \(Q_i \) is a dominant strategy, then two cases can arise:

Case 1: \(R_i(1) \) is safe-if-favorite and \(Q_i(1) = R_i(1) \).

This case is such that \(BOS^k_i(Q) = R_i(1) \). Hence, there exists no \(s \) with \(s P_i BOS^k_i(Q) \) and \(t_i \) cannot be part of a blocking pair.

Case 2: \(\#R_i = 1 \) and \(Q_i = R_i \).

If \(BOS^k_i(Q) = R_i(1) \), then \(t_i \) cannot participate to a blocking pair for the reason explained in Case 1. If on the other hand \(BOS^k_i(Q) = t_i \), then student \(t_i \) was rejected from \(R_i(1) \) in the first round of \(BOS^k \) for profile \(Q \). This implies that \(q_{R_i(1)} \) students with higher priority than \(t_i \) at \(R_i(1) \) are assigned to \(R_i(1) \) after the first round of the algorithm. The same students are assigned to \(R_i(1) \) at the end of the algorithm. Therefore \(t_i \) cannot participate in a blocking pair as she only finds \(R_i(1) \) acceptable.

It is easy to see that if \(t_i \) is assigned to a unacceptable school or prefers a school \(s \) with an available seat to her assignment, strategy \(Q_i \) cannot be dominant. Respectively, ranking no acceptable school and ranking \(s \) as the only acceptable school dominates \(Q_i \).
C.3 Characterizing undominated strategies

Proposition 4

Sufficiency.

Case (i)

If $Q_i(1)$ is the favorite acceptable safe-if-favorite, then Q_i is a safe strategy by Lemma 6. By the definition of an unsafe strategy, only a safe strategy Q'_i can dominate the safe Q_i that guarantees assignment in the acceptable school $Q_i(1)$. By Lemma 6, Q'_i is safe if and only if $Q'_i(1)$ is safe-if-favorite (given the short-supply assumption). As $Q_i(1)$ is the favorite acceptable safe-if-favorite, any strategy Q'_i that dominates Q_i must be such that $Q'_i(1) = Q_i(1)$. As $Q_i(1)$ is safe-if-favorite, the two strategies lead to the same assignment for t_i whatever the strategies reported by other students. Hence Q_i and Q'_i are equivalent and Q'_i cannot dominate Q_i.

Case (ii)

If $Q_i(1)$ is not safe-if-favorite, then Q_i is unsafe by Lemma 6. By Lemma 7, if Q_i is dominated, then Q_i is dominated by a safe strategy Q'_i. Again, the safe strategy Q'_i must be such that $Q'_i(1)$ is safe-if-favorite (Lemma 6).

Now, by assumption, there exists a school $s' \in Q_i$ that is preferred to the favorite acceptable safe-if-favorite. This guarantees that Q'_i does not dominate Q_i. Indeed, Lemma 8 (see below) shows that for any school s ranked in an unsafe strategy, there exists Q^*_{-i} such that

$$BOS^k_i(Q_i, Q^*_{-i}) = s.$$

In particular, there exists Q^*_{-i} such that

$$BOS^k_i(Q_i, Q^*_{-i}) = s'.$$

As $Q'_i(1)$ is safe-if-favorite we have $BOS^k_i(Q'_i, Q^*_{-i}) = Q'_i(1)$. By assumption we also have $s' \in Q'_i(1)$, which shows that strategy Q'_i does not dominate Q_i.

Necessity.

Case (i)

If $Q_i(1)$ is safe-if-favorite but not the favorite acceptable safe-if-favorite, it is clearly dominated by Q'_i for which $Q'_i(1)$ is the favorite acceptable safe-if-favorite.

Case (ii)

Now, suppose $Q_i(1)$ is not safe-if-favorite. Assume first that Q_i contains no school preferred to the favorite safe-if-favorite. Then it is again dominated by any Q'_i for which $Q'_i(1)$ is the favorite safe-if-favorite. Assume now that Q_i contains less than $\min\{k, \#R_i\}$ acceptable schools. Two cases can arise:

- Q_i contains unacceptable schools.

 As $Q_i(1)$ is not safe-if-favorite, all schools in Q_i belong to $\text{Range}(Q_i)$. By Lemma 5, Q_i cannot be undominated strategy.

31
• Q_i contains no unacceptable schools but less than $\min\{k, \#R_i\}$ acceptable schools.

In this case, there exists an acceptable school s that is not ranked in Q_i. Strategy $Q'_i : Q_i s$ obtained by attaching s at the end of Q_i can be played in BOS^k and dominates Q_i. By construction of Q'_i we have that if

$$BOS^k_i(Q_i, Q^*_i) \neq BOS^k_i(Q'_i, Q^*_i),$$

then $BOS^k_i(Q_i, Q^*_i) = t_i$ and $BOS^k_i(Q'_i, Q^*_i) = s$. Since both strategies Q_i and Q'_i are unsafe, there exists such a Q^*_i by Lemma 5.

Lemma 8. Let Q_i be an unsafe strategy of BOS^k, where $k \in \mathbb{N}$. For any school $s \in Q_i$, there exists Q^*_i such that

$$BOS^k_i(Q_i, Q^*_i) = s.$$

Proof. By definition of an unsafe strategy, there exists Q^*_i such that $BOS^k_i(Q_i, Q^*_i) = t_i$.

Now consider Q^*_i in which all t_j assigned in $BOS^k_i(Q_i, Q^*_i)$ report

$$Q^*_j : BOS^k_i(Q_i, Q^*_i) \ t_j$$

and, for simplicity, students t_h who are unassigned in $BOS^k_i(Q_i, Q^*_i)$ rank no schools at all in Q^*_i.\footnote{This is for simplicity only. By no means does the argument of the proof require that students be allowed to rank no schools. Other more realistic constructions of Q^*_i would also do the job.} Clearly, we still have

$$BOS^k_i(Q_i, Q^*_i) = t_i$$

because the same set of students apply to $Q_i(1)$ in the first round (which implies that t_i is still rejected from $Q_i(1)$ in the first round) and all the seats at all schools are filled in the first round.

Now construct Q^*_1 from Q^*_i by changing only the reported profile of students $t_j \neq t_i$ who rank $Q_i(1)$, and make those students rank no schools at all. Then if $\ell = 1$, $BOS^k_i(Q_i, Q^*_i) = Q_i(1)$, as requested. Also, if $\ell > 1$, t_i is still rejected from $Q_i(1)$ in the first round and all seats at all schools ranked before $Q_i(\ell)$ in Q_i are filled in the first round. Therefore, we clearly have $BOS^k_i(Q_i, Q^*_i) = Q_i(1)$, the desired result. \blacksquare

C.4 Comparing the extent of uncontroversial advice in DA^k and BOS^k

Corollary 3

Part 1. Every clean undominated strategy of DA^k is an undominated strategy of BOS^k.

Clearly, if $R_i(1)$ is safe-if-favorite, strategies Q_i with $Q_i(1) = R_i(1)$ are the only undominated strategies in both BOS^k and DA^k. Thus we only need to prove the corollary for the case in which $R_i(1)$ is not safe-if-favorite.

By Proposition 2, there are two subcases.
Condition (i) in Proposition 2.
In this case, any clean undominated strategy Q_i in DA^k has $Q_i(1) = R_i(1)$ and ranks $\min\{k, \#R_i\}$ acceptable schools. Thus by Proposition 4(ii), Q_i is also an undominated strategy in BOS^k (t_i prefers $Q_i(1)$ to all her acceptable safe-if-favorite schools).

Condition (ii) in Proposition 2.
Again, let Q_i be any clean undominated strategy satisfying the conditions in of Proposition 2(ii). Note that any safe-if-favorite school s^* is a minimal safe set in DA^k. Thus, by the condition in of Proposition 2(ii), for all safe-if-favorite school s^* in BOS^k, there is a school $s \in Q_i$ with $s \neq s^*$ such that $s P_i s^*$. But then, by of Proposition 4(ii), Q_i is an undominated strategy of BOS^k.

Part 2. Not every undominated strategy of BOS^k is a clean undominated strategy of DA^k.
Simply consider Example 1. Strategy Q_4 is undominated in BOS^3 (by Proposition 4(ii)) but as we show in the example, Q_4 is dominated in DA^3. Similar counter-example are easily found for any $k \geq 2$.

C.5 Comparing the manipulability with respect to the criterion of Arribillaga and Massó (2015)
Given preferences R_i, let R_i^k denote a truthful strategy in a school choice mechanism with constraint k. Formally, $R_i^k : R_i(1) \ldots R_i(k) t_i \ldots$.

Lemma 9. For each preferences R_i at which t_i has a dominant strategy in BOS^k, this dominant strategy is equivalent in BOS^k to the truthful strategy R_i^k.

Proof. By Proposition 3, there are two cases in which t_i has a dominant strategy in BOS^k.

Case (i) : $\#R_i(1)$ is safe-if-favorite.
Then by Proposition 3(i), any dominant strategy Q_i is such that $Q_i(1) = R_i(1)$.
Such Q_i is equivalent to R_i^k in BOS^k because $Q_i(1) = R_i^k(1) = R_i(1)$ and $R_i(1)$ is safe-if-favorite.

Case (ii) : $\#R_i = 1$.
Then by Proposition 3(ii), the dominant strategy Q_i is such that $Q_i = R_i$.
Such Q_i is equivalent to R_i^k in BOS^k given that $R_i^k = R_i$ when $\#R_i = 1$.

Lemma 10. For any preferences R_i for which t_i has a dominant strategy in DA^k, this dominant strategy is equivalent in DA^k to the truthful strategy R_i^k.

Proof. By Proposition 1, there are two cases in which t_i has a dominant strategy in DA^k.

Case (a) : $\#R_i \leq k$.
Then, the dominant strategy Q_i is such that $Q_i = R_i$ by Proposition 1(i). Such Q_i is equivalent to R_i^k in DA^k given that $R_i^k = R_i$ when $\#R_i \leq k$.

33
Case (b) : for some $q \leq \min\{k, \#R_i\}$, the q most preferred schools in R_i form a safe set.

Then, any dominant strategy Q_i is such that this safe set is ranked first in Q_i and there is no switch among those q schools in Q_i by Proposition 1(ii). Such Q_i is equivalent to R_i^k in DA^k given that $Q_i(\ell) = R_i^k(\ell)$ for all $\ell \in \{1, \ldots, q\}$ and these q schools form a safe set in DA^k.

\[\blacksquare\]

Corollary 4

Part 1. For each R_i at which t_i has a truthful dominant strategy in BOS^k, t_i also has a truthful dominant strategy in DA^k.

By Lemma 9 and 10, it is sufficient to prove that for each R_i at which t_i has a dominant strategy in BOS^k, t_i has a dominant strategy in DA^k.

By Proposition 3, there are two cases in which t_i has a dominant strategy in BOS^k.

- **Case (a) :** $R_i(1)$ is safe-if-favorite.

 This implies that school $R_i(1)$ forms a safe set in DA^k. Hence, there exists $q = 1 \leq k$ such that the q most preferred schools in R_i form a safe set DA^k.

 Therefore, t_i has a dominant strategy in DA^k by Proposition 1(ii).

- **Case (b) :** $\#R_i = 1$.

 In this case, t_i has a dominant strategy in DA^k by Proposition 1(i).

Part 2. For all $k > 1$, there exist R_i, F and q such that t_i has a truthful dominant strategy in DA^k but not in BOS^k.

By Lemma 9 and 10, it is sufficient to prove that there exists R_i, F and q such that t_i has a dominant strategy in DA^k but not in BOS^k.

Take for example any preferences R_i featuring k acceptable schools for which $R_i(1)$ is not safe-if-favorite. Such preferences always exist because of the short-supply assumption. The strategy $Q_i = R_i$ is dominant in DA^k by Proposition 1(i). Strategy Q_i is not dominant in BOS^k since $R_i(1)$ is not safe-if-favorite (in violation of condition (i) in Proposition 3) and $\#R_i = \#Q_i > 1$ for all $k > 2$ (in violation of condition (i) in Proposition 3).

Corollary 5

Part 1. For each R_i at which t_i has a truthful dominant strategy in DA^k, t_i has a truthful dominant strategy in DA^{k+1}.

By Lemma 9 and 10, it is sufficient to show that for each R_i at which t_i has a dominant strategy in DA^k, t_i has a dominant strategy in DA^{k+1}.

By Proposition 1, there are two cases for which t_i has a dominant strategy in DA^k.

- **Case (i) :** $\#R_i \leq k$.

 Then, $\#R_i \leq k + 1$ and t_i has a dominant strategy in DA^{k+1}.
34
Case (ii) : for some $q \leq \min\{k, \#R_i\}$, the q most preferred schools in R_i form a safe set. Then, we have that $q \leq \min\{k + 1, \#R_i\}$ and the q most preferred schools in R_i form a safe set in DA^{k+1}. Therefore, t_i has a dominant strategy in DA^{k+1}.

Part 2. For all $k < m$, there exist R_i, F and q such that t_i has a truthful dominant strategy in DA^{k+1} but not in DA^k.

By Lemma 9 and 10, it is sufficient to show that if there exist R_i, F and q such that t_i has a dominant strategy in DA^{k+1} but not in DA^k.

Take for example any preference R_i featuring $k + 1$ acceptable schools such that R_i contains no safe set. Such preferences always exist by the short-supply assumption. Any strategy $Q_i = R_i$ is dominant in DA^{k+1} by Proposition 1(i). Strategy Q_i is not well-defined in DA^k since $\#Q_i > 1$. Furthermore, no strategy Q_i' is dominant in Q_i as $\#R_i > k$ (in violation of condition (i) in Proposition 1) and R_i contains no safe set (in violation of condition (ii) in Proposition 1).

Corollary 6

For each R_i at which t_i has a truthful dominant strategy in BOS^k, t_i has a truthful dominant strategy in BOS^q for all $k,q \geq 1$.

By Lemma 9 and 10, it is sufficient to prove that for each R_i at which t_i has a dominant strategy in BOS^k, t_i has a dominant strategy in BOS^q for all $k,q \geq 1$.

By Proposition 3, there are two cases for which t_i has a dominant strategy in BOS^k. The first case arises when $R_i(1)$ is safe-if-favorite. This implies that t_i has a dominant strategy in BOS^q. The second case arises when $\#R_i = 1$. Therefore, t_i has a dominant strategy in BOS^q.

References

